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Abstract
The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in
the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid
dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal
dispersions in the softness–concentration state space. The slow dynamics predicted by this
theory near the glass transition is compared with available experimental data for the decay of the
intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing
deviations from this simple scheme occur for increasingly softer potentials, and this is studied
here using the Rogers–Young static structure factor of the soft-sphere systems as the input of
the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most useful models in the statistical physics of
liquids is the hard-sphere fluid. Although this is a mathematical
idealization, its properties serve as a first-order approximation
for those of real simple liquids [1], including ‘simple’ colloidal
dispersions, in which the colloidal particles play the role
of the atoms in atomic systems [2, 3]. For example,
the thermodynamic and structural properties of systems of
particles interacting through soft repulsive interactions may
be shown to map onto the properties of an equivalent hard-
sphere fluid at the same number concentration but with an
effective hard-sphere diameter determined by simple physical
considerations, such as those leading to the ‘blip function’
method of Andersen, et al [1, 4]. In fact, this mapping
allows us to approximate the properties of real simple liquids,
adequately modeled by a steep but soft repulsion plus an
additional attractive term, as in the Lennard-Jones potential,
by the sum of the properties of an effective hard-sphere
reference system plus a smaller perturbation representing the
contribution of the attractive interactions [1, 4].

This structural equivalence between soft-sphere and hard-
sphere systems has been employed to describe not only
the thermodynamic and structural properties of soft-sphere
systems, but also their dynamic properties [5]. It is, however,
not an exact result, and the accuracy of its predictions depends
on the specific property studied [6]; thus, for each such
property one should identify the softness regime where this
structural scaling is a useful approximation and the regime
where it is not. In the regime where it is shown to hold,

however, not only must the topology of the equilibrium phase
diagram of soft-sphere systems be trivially equivalent to that of
the hard-sphere model, but also the existence and location of
the dynamic arrest transition [7–9] in these systems could be
inferred from the existence and location of the corresponding
glass transition in the hard-sphere model. Thus, the description
of the dynamic properties of colloidal dispersions of particles
interacting through some form of soft-core potentials (microgel
colloids [10], star polymers with a large number of arms [11],
etc) would be rather straightforward, in the sense that they
could be obtained from the corresponding properties of the
hard-sphere system by simple rescaling arguments. This
equivalence must apply more accurately for soft but very
steep potentials, and must break down for extremely soft
interactions. In fact, it has been found that simple mono-
disperse systems involving ultra-soft repulsive interactions
may exhibit qualitatively new features [12], not observed in
the hard-sphere system. It is then important to investigate the
range of validity of this equivalence in the context of particular
families of soft repulsive potentials and of specific kinds of
physical properties of these models.

With the aim of better understanding available experimen-
tal information on the glassy dynamics of soft-sphere disper-
sions [10], in this work we address this question in the context
of the dynamic properties of dispersions of soft colloidal par-
ticles. We are interested in particular in the slow dynamics
of these systems near their glass transition, and more specifi-
cally, in the location of the glass transition line in the softness–
concentration state space. For this, we consider one specific
family of repulsive soft-sphere interactions, namely, the trun-
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cated Lennard-Jones-like potential given, in units of the ther-
mal energy kBT = β−1, by

βu(ν)(r) = ε∗
[

1

(r/σ)2ν
− 2

(r/σ)ν
+ 1

]
, (1.1)

for 0 < r < σ , and such that it vanishes for r > σ . The
positive parameter ν determines the degree of softness of this
pair potential, and the limit ν → ∞ corresponds to the hard-
sphere system. The dimensionless energy scale ε∗ could also
be used to modulate the effective degree of softness, but in
order to simplify our discussion we shall keep this parameter
fixed to ε∗ = 1. Between collisions, the dispersed particles
are assumed to execute Brownian motion, characterized by a
diffusion coefficient D0. In systems with strong hydrodynamic
interactions we shall assume that D0 can be identified with the
short-time self-diffusion coefficient [2, 13].

We shall base our description of the macroscopic
dynamic properties of this system on the self-consistent
generalized Langevin equation (SCGLE) theory of colloid
dynamics [14, 15], and more specifically on the predictions
of this theory regarding the dynamic arrest transitions in
mono-disperse suspensions [16–18]. The SCGLE theory
was originally devised to describe the tracer and collective
diffusion properties of colloidal dispersions in the short-
and intermediate-time regimes. Its self-consistent character,
however, introduces a non-linear dynamic feedback, leading
to the prediction of dynamic arrest, similar to that exhibited
by the mode coupling theory (MCT) of the ideal glass
transition [9]. The application of this theory was first
illustrated with the comparison of its predictions of the
glass transition in two mono-disperse experimental systems
with specific (hard-sphere and screened electrostatic) inter-
particle effective forces [17]. For these systems the SCGLE
theory was found to have similar quantitative predictive
power as conventional MCT, but with a lower degree of
difficulty in its application [18]. Some aspects of the
application of the SCGLE theory to systems with short-
ranged attractive interactions were also reported in recent
communications [16, 19].

In the following section we review the basic elements of
the SCGLE theory of dynamic arrest. This theory requires
the static structure factor S(k) of the system as an external
input. Here we resort to two strategies to calculate S(k). The
first consists of the simplest analytic approximation for S(k),
based precisely on the assumed static equivalence between
soft- and hard-sphere systems, for which the Percus–Yevick
approximation [20, 21], complemented with the Verlet–Weiss
correction [22], provides virtually exact analytic results; in the
appendix we summarize the details of this simple approximate
scheme to determine S(k). The second strategy is based on
the numerical solution of the Ornstein–Zernike equation within
the Rogers–Young approximation [23], without resorting to the
equivalence principle above.

The dynamic extension of the static equivalence principle
between soft- and hard-sphere systems is discussed within
the framework of the SCGLE theory in section 3 and in
the appendix. This extension leads to simple scaling rules

that allow us to approximate the dynamic properties of soft-
sphere systems by those of the hard-sphere system, easily
described by the SCGLE theory [17, 18]; thus, we solve
the full self-consistent system of equations of the SCGLE
theory for the hard-sphere system to determine the time and
wavevector dependence of the collective dynamic properties of
any other moderately soft-sphere system. The predictive power
of this extremely simple scheme is then tested in section 4, by
comparing its predictions with available experimental data of
the dynamics of a specific soft-sphere system near its glass
transition. The comparison of these calculations with the
experimental results is found to be reasonably accurate not only
qualitatively but also quantitatively.

Since this simple theoretical scheme must eventually
break down for soft enough interactions, i.e. for low enough
values of ν, in section 5 we discuss the deviations from
this hard-sphere-like behavior of soft-sphere systems. For
this we resort to the second, more accurate, strategy to
calculate the static structure factor involving the Rogers–
Young approximation [23]. The comparison of the resulting
phase diagram with that determined in section 3 on the basis of
the equivalence principle provides an indication of the limits
of validity of the simple scheme of section 3. The main
conclusions of this paper are finally summarized in section 4.

2. Brief review of the SCGLE theory

The dynamic properties of colloidal dispersions can be
described in terms of the relaxation of the fluctuations δn(r, t)
of the local concentration n(r, t) of colloidal particles around
its bulk equilibrium value n. The average decay of δn(r, t)
is described by the time-dependent correlation function
F(k, t) ≡ 〈δn(k, t)δn(−k, 0)〉 of the Fourier transform
δn(k, t) ≡ (1/N)

∑N
i=1 exp [ik · ri (t)] of the fluctuations

δn(r, t), with ri (t) being the position of particle i at time t .
F(k, t) is referred to as the intermediate scattering function.
One can also define the self-component of F(k, t), referred
to as the self-intermediate scattering function, as FS(k, t) ≡
〈exp [ik · �R(t)]〉, where �R(t) is the displacement of any of
the N particles over a time t . The self-consistent generalized
Langevin equation theory of colloid dynamics [14, 15] leads
to the calculation of F(k, t) and FS(k, t), given the effective
interaction pair potential u(r) between colloidal particles and
the corresponding equilibrium static structure, represented by
the static structure factor S(k).

This theory is based on general and exact expressions
for F(k, t) and FS(k, t) in terms of a hierarchy of memory
functions complemented by a number of physically or
intuitively motivated approximations [14]. The first and most
important of such elements consists of general and exact
memory-function expressions for F(k, t) and FS(k, t), which,
in Laplace space, read [14]

F(k, z) = S(k)

z + k2 D0 S−1(k)

1+C(k,z)

, (2.1)

FS(k, z) = 1

z + k2 D0
1+CS (k,z)

, (2.2)
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where D0 is the diffusion coefficient describing the particles’
motion between collisions, S(k) is the static structure factor of
the system, and C(k, z) and CS(k, z) are the Laplace transform
(LT) of the so-called irreducible memory functions C(k, t)
and CS(k, t) [24]1. These exact results can be derived in
a variety of manners, and our derivation was framed within
the generalized Langevin equation (GLE) formalism and the
process of contraction of the description [26, 27].

The second ingredient of the SCGLE theory is the intuitive
notion that collective and self-dynamics may be connected
in a simple manner. Vineyard’s approximation [28], in
which the collective propagator �(k, t) ≡ F(k, t)/S(k) is
approximated by the ‘self’-propagator �(s)(k, t) ≡ F (s)(k, t),
is the most primitive (or ‘zeroth-order’) implementation of this
idea. Equations (2.1) and (2.2) suggest, however, that other
connections between self- and collective dynamics may be
proposed at the level of the memory functions C(k, z) and
CS(k, z), the simplest of them being to approximate one by
the other, namely,

C(k, t) = CS(k, t). (2.3)

This is referred to as the first-order Vineyard approximation,
and is the approximation that we shall incorporate in the
SCGLE theory of dynamic arrest employed in the present
work. In spite of its apparent simplicity (or, in fact, because
of its simplicity), this turns out to be the formal connection
between collective and self-dynamics that best serves the
purpose of describing the long-time slow dynamics of systems
near their dynamic arrest transitions. It is the best not
only because it is the simplest, but also because it turns
out to be equally accurate, for the purpose above, as other
more sophisticated higher-order Vineyard approximations. For
example, given that the SCGLE theory was originally aimed
at describing short- and intermediate-time properties, the
difference [C(k, t) − CS(k, t)] was approximated by the
difference of the exact short-time/large-k limit CSEXP(k, t)
and CSEXP

S (k, t) of these memory functions, for which well
established expressions are available in terms of equilibrium
structural properties [17, 29, 30]. As was discussed more
recently [18], however, an equally accurate approximation is to
simply neglect this difference, and to relate the two irreducible
memory functions by the simpler relation in equation (2.3).

The third ingredient consists of the independent approxi-
mate determination of FS(k, t) [or CS(k, t)]. One intuitively
expects that these k-dependent self-diffusion properties should
be simply related to the properties that describe the Brownian
motion of individual particles, just like in the Gaussian approx-
imation [2], which expresses FS(k, t) in terms of the mean-
squared displacement W (t) as FS(k, t) = exp[−k2W (t)]. We
introduce an analogous approximate connection, but at the
level of their respective memory functions. The memory func-
tion of W (t) is the so-called time-dependent friction function
�ζ(t). This function, normalized by the free-diffusion fric-
tion coefficient ζ0 (≡kBT/D0), is the long-wavelength limit
of CS(k, t), i.e., limk→0 CS(k, t) = �ζ ∗(t) ≡ �ζ(t)/ζ0.

1 In reality, Nägele et al [24] refer to the [C(k, z)D0] as the ‘irreducible
memory function’, a concept first introduced by Cichocki and Hess [25].

Thus, we interpolate CS(k, t) between its two exact limits,
CS(k, t) = CSEXP

S (k, t) + [�ζ ∗(t) − CSEXP
S (k, t)]λ(k), with

λ(k) being a phenomenological interpolating function such
that λ(k → 0) = 1 and λ(k → ∞) = 0. In the absence
of rigorous fundamental guidelines to construct this interpolat-
ing function, we require λ(k) to represent the optimum mixing
of these two limits of CS(k, t) in the simplest possible analyt-
ical manner. Guided by these practical considerations, in [14]
the proposal was made to model λ(k) by the functional form
λ(k) ≡ [1 + (k/kmin)

2]−1, with kmin being the position of the
first minimum that follows the main peak of the static struc-
ture factor S(k). Furthermore, we adopt a simplified version of
the interpolation formula above, due to the fact that the present
work deals with the long-time slow relaxation processes near
the dynamic arrest transition, for which the short-time details
described by the short-time memory function CSEXP

S (k, t) are
not expected to be relevant. Thus, the interpolating formula
above simplifies to

CS(k, t) = [
�ζ ∗(t)

]
λ(k), (2.4)

which is incorporated in the present self-consistent theory.
The fourth ingredient of our theory is based on still

another exact result, this time for �ζ ∗(t). In [26] the effective
Langevin equation of a tracer colloidal particle interacting
with the other particles of a mono-disperse suspension was
derived, using the concept of contraction of the description [27]
(a summary of such a derivation is contained in appendix B
of [17]). Besides the solvent friction force, −ζ 0V(t), the direct
interactions of the tracer particle with the other particles give
rise to an additional friction term of the form − ∫ t

0 dt ′�ζ(t −
t ′)V(t ′), where V(t) is the tracer particle’s velocity at time t .
In the process, an exact result for the time-dependent friction
function �ζ ∗(t) ≡ �ζ(t)/ζ 0 is generated. This exact result
may, upon the introduction of two well defined simplifying
approximations (referred to as the ‘homogeneous fluid’ and
the ‘decoupling’ approximations [26]), be converted into the
following approximate but general expression:

�ζ ∗(t) = D0

3 (2π)3 n

∫
dk

[
k[S(k) − 1]

S(k)

]2

F(k, t)FS(k, t).

(2.5)
The incorporation of this result finally leads to a closed
system of equations, equations (2.1)–(2.5), which constitute
the SCGLE theory of colloid dynamics.

Besides the unknown dynamic properties, these equations
only involve the static structural property S(k), determined by
the methods of equilibrium statistical thermodynamics, and
the interpolating function λ(k), which also depends on S(k).
Notice that the resulting self-consistent scheme is free from
any form of adjustable parameters. Let us also mention that
equations (2.1) and (2.2) are exact results, and equation (2.5)
derives from another exact result. Hence, it should not be a
surprise that the same results are employed by other theories; in
fact, the same equations are employed in MCT. The difference
lies, of course, in the way we relate them and use them. In this
sense, the distinctive elements of our theory are the Vineyard-
like approximation in equation (2.3) and the interpolating
approximation in equation (2.4).

3
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From the SCGLE scheme in equations (2.1)–(2.5) one can
derive the equations for its long-time asymptotic solutions.
Thus, the unknown dynamic properties F(k, t), FS(k, t),
C(k, t), CS(k, t), and �ζ ∗(t), which in an ergodic state decay
to zero, in a non-ergodic state decay to finite asymptotic values,
referred to as the non-ergodicity parameters, that we denote,
respectively, by f (k)S(k), fS(k), c(k), cS(k), and �ζ ∗(∞).
One can then re-write equations (2.1)–(2.5) in terms of these
asymptotic values plus a regular contribution that does decay
to zero. Taking the long-time limit of the resulting equations
leads to a system of five equations for these five unknown non-
ergodicity parameters [17, 18]. Such a system of equations can
easily be reduced to a single equation for the scalar parameter
�ζ ∗(∞), which can be written as

1

γ
= 1

6π2n

∫ ∞

0
dk k4 [S(k) − 1]2 λ2(k)[

λ(k)S(k) + k2γ
] [

λ(k) + k2γ
] ,

(2.6)
with γ defined as γ ≡ D0/�ζ ∗(∞). The parameter γ is
just the mean-squared displacement of a particle localized by
the arrested cage formed by its neighbors [17]. The form
of this criterion exhibits its simplicity: given the effective
inter-particle forces, statistical thermodynamic methods allow
one to determine S(k), and the absence or existence of finite
positive real solutions of this equation will indicate if the
system remains in the ergodic phase or not (notice that γ = ∞
is always a solution, representing ergodic states). The meaning
of

√
γ , as the localization length of a tracer particle in the

glass, follows from the fact that the effective force on such
tracer particle includes a term given by [26] ζ0

∫ ∞
0 �ζ ∗(t −

t ′)v(t ′) dt ′; in an arrested state, the non-ergodic part of �ζ ∗(t)
generates a harmonic force whose elastic constant, given by
ζ0�ζ ∗(∞), is related to γ by the definition above, through the
equipartition theorem.

The other four equations for the non-ergodicity parameters
can then be used to express those quantities in terms of γ . The
equations for the non-ergodicity parameters f (k) and fS(k)

then read

f (k) = λ(k)S(k)

λ(k)S(k) + k2γ
(2.7)

and

fS(k) = λ(k)

λ(k) + k2γ
. (2.8)

The last three equations indicate that γ and the non-
ergodicity parameters f (k) and fS(k) only depend on the
static structure factor S(k) (and on the interpolating function
λ(k), which is determined by S(k)), and not on transport
properties, such as D0. Thus, they clearly illustrate one
important conclusion of the SCGLE theory, namely, that the
static structure factor S(k) alone is sufficient to determine if
the system will be dynamically arrested or not. In other words,
the information needed to decide if the system is arrested is
encrypted in S(k), and these three equations provide a practical
algorithm to ‘de-encrypt’ this information. The accuracy of the
dynamic arrest scenario thus predicted depends, however, on
the quality of the static structure factor S(k) that is fed as an
input to the SCGLE theory, in particular to equations (2.6)–
(2.8). For this we may resort to any of the available statistical

thermodynamic theories to determine S(k) [1]. Here we
shall mostly employ the simplest, fully analytic approximation,
explained in the following section and in the appendix.

3. Dynamic equivalence between soft and hard
spheres

In this section and in the appendix we discuss three related
but independent subjects. Taken together, these three subjects
define a simple analytic scheme to express the static and
dynamic properties of soft-sphere systems in terms of the
corresponding properties of the hard-sphere system. The
first of these subjects refers to the notion that the static
structure of the soft-sphere systems in equation (1.1) must
be approximately the same as that of a hard-sphere system
with an adequately chosen effective diameter. Taken as an
assumption, this notion is referred to as the structural scaling
or static equivalence principle. This principle has a dynamic
extension, and this is the second subject of this section. Such
an extension says that the dynamic properties of the soft-
sphere systems in equation (1.1) must also be the same as
those of the corresponding effective hard-sphere system up to
some rescaling prescriptions that we write and illustrate in this
section. The third subject refers to the simplest, fully analytic,
approximation for the soft-sphere static structure factor S(k) of
the systems in equation (1.1), that results when we complement
the static equivalence principle above with the Verlet–Weis-
improved solution of the Percus–Yevick approximation for
hard spheres; the details of this approximation are given in the
appendix.

The static equivalence principle is the basis of the
treatment of soft cores developed in the framework of
the perturbation theory of liquids of Andersen, Weeks and
Chandler (AWC [4]; see section 6.3 of [1] for a textbook
presentation). In its simplest version, it states that the radial
distribution function g(ν)(r; n, σ (ν)) of the soft-sphere system
of equation (1.1) with diameter σ (ν) at concentration n is
identical to the radial distribution function g(HS)(r; n, σ (HS)) of
a hard-sphere system at the same concentration n and with an
appropriately chosen diameter σ (HS), except for a small region
near r = σ (ν) (or, without exception, if we describe the static
structure in terms of the function y(r) = exp(βu(r))g(r)).
Conversely, the static structure of the HS system can be
represented by the structure of any of the soft-sphere systems
in the family described by equation (1.1). As discussed in
more detail in the appendix, this expected equivalence can be
expressed in terms of the static structure factors S(ν)(k; n, σ (ν))

as the following iso-structurality condition:

S(ν)(k; n, σ (ν)) = S(HS)(k; n, σ (HS)), (3.1)

with the diameters σ (ν) and σ (HS) being related to each other
by a more restricted version of this condition such as, for
example, S(ν)(kmax; n, σ (ν)) = S(HS)(kmax; n, σ (HS)), with
kmax being the position of the main peak of S(k). For
moderately soft potentials we shall employ, however, a simpler
and more practical relation, referred to as the ‘blip function’
condition [1], which requires that∫

d3r
[
exp(−βu(ν)(r)) − exp(−βu(HS)(r))

] = 0. (3.2)

4
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It is not difficult to show that the relationship between σ (ν) and
σ (HS) that results from this condition, for βu(ν)(r) given by
equation (1.1), can be written as

[
σ (ν)

σ (HS)

]
=

{
1 − 3

∫ 1

0
dxx2exp

[
−

(
1

x2ν
− 2

xν
+ 1

)]}− 1
3

.

(3.3)
Just as the previous static equivalence is expected to

hold on the basis of simple intuitive arguments, one might
expect from similar arguments that a dynamic version of this
equivalence holds, as discussed and demonstrated in [5] using
computer simulated results. Let us now demonstrate that such
dynamic equivalence is also built into the SCGLE theory. For
this, let us go back to the previous section, to check that the
full self-consistent scheme in equations (2.1)–(2.5) needs as
the only explicit inputs the number density n (equation (2.5))
and the free-diffusion coefficient D(ν)

0 (equations (2.1), (2.2),
and (2.5)) besides the static structure factor S(ν)(k; n, σ (ν)).
Then, using the static equivalence condition in equation (3.1)
in the self-consistent scheme leads to the conclusion that
its solution for F (ν)(k, t; n, σ (ν)) and F (ν)

S (k, t; n, σ (ν)) must
satisfy the referred extension, which can be written as

F (ν)(k, D(ν)

0 t; n, σ (ν)) = F (HS)(k, D(HS)

0 t; n, σ (HS)) (3.4)

and

F (ν)

S (k, D(ν)

0 t; n, σ (ν)) = F (HS)

S (k, D(HS)

0 t; n, σ (HS)). (3.5)

This correspondence between soft- and hard-sphere
systems implies that all the soft-sphere systems in the family
in equation (1.1) are structurally and dynamically identical to
each other, in the sense that they share not only the same static
structure factor S(k), but also the same dynamic properties.
Hence, the structure and dynamics of any member of this
family can be used to represent the structure and the dynamics
of any other member, including, of course, the HS system
itself.

The dynamic equivalence indicated in equations (3.4)
and (3.5) is meant to apply at all times and wavevectors; in
particular it should apply in the asymptotic long-time regime
described by the equations for the squared localization length
γ , equation (2.6), and for the non-ergodicity parameters,
equations (2.7) and (2.8), which then must be such that

γ (ν)(n, σ (ν)) = γ (HS)(n, σ (HS)), (3.6)

f (ν)(k; n, σ (ν)) = f (HS)(k; n, σ (HS)), (3.7)

and
f (ν)

S (k; n, σ (ν)) = f (HS)

S (k; n, σ (HS)). (3.8)

An immediate consequence of these results is that two
soft-sphere systems with diameters σ (ν) and σ (ν′) related by
the blip function condition will have the same glass transition
number concentration, n(ν)

g = n(ν′)
g = ng. Their respective

volume fractions, however, will differ and will be such that
φ(ν)

g = [σ (ν)/σ (ν′)]3φ(ν′)
g . In particular, the glass transition

volume fraction φ(ν)
g of any soft-sphere system can be written

as
φ(ν)

g = [σ (ν)/σ (HS)]3φ(HS)
g . (3.9)

Figure 1. Dynamic arrest phase diagram of the soft-sphere systems
in equation (1.1) in the softness–concentration state space. The solid
line is the glass transition line when the concentration n is scaled as
the volume fraction φ(ν) = πnσ (ν)3/6. The ergodic and the arrested
states lie, respectively, to the left and to the right of this line. The
inset plots the dependence of the ratio [σ (ν)/σ (HS)] on the softness
parameter ν, given by equation (3.3). The dashed vertical line in the
main figure represents the asymptotic value
φ(HS)

g = limν→∞ φ(ν)
g = 0.563; according to the assumption of

dynamic equivalence, this line would be the glass transition line if
the horizontal axis were labeled not by φ(ν) but by the number
concentration n (or, equivalently, by the effective volume fraction
φ(HS) = πnσ (HS)3/6).

Since we know the value of φ(HS)
g (=0.575 according to

experiment [31]; 0.563 according to the present theory [18]),
and since the ratio [σ (ν)/σ (HS)] is given by equation (3.3) (see
the inset of figure 1), we can immediately predict the value of
the glass transition volume fraction φ(ν)

g for any soft potential.
In this manner, we can draw the glass transition line in the
concentration–softness state space, as is done in figure 1, where
the solid line corresponds to the loci of the points (φ(ν)

g , ν).
The points (φ(ν), ν) to the left of this line represent ergodic
states, whereas the arrested states lie in the region to the right
of this glass transition line. Of course, if instead of the volume
fraction φ(ν) we had used the concentration n to label the
horizontal axis in this figure, the glass transition line would
be a vertical line, since, as indicated above, n(ν)

g = n(ν′)
g = ng.

For example, if the horizontal axis of figure 1 were labeled not
by φ(ν) but by [σ (HS)/σ (ν)]3φ(ν) = φ(HS) = πnσ (HS)3/6, the
glass transition line would be the dashed line in this figure.

Another important result of the dynamic equivalence
being discussed is explicitly expressed by equation (3.6),
which states that the localization length squared γ (ν)(n, σ (ν))

of a soft-sphere system at concentration n does not depend
on the softness of the potential, and is, hence, the same
as that of the hard-sphere system at the same concentration
(provided that the diameters σ (ν) and σ (HS) are related by the
blip function condition). An immediate consequence of this
equality involves the Lindemann ratio, defined as r (ν)

L (n) ≡√
γ (ν)/n−1/3: equation (3.6) implies that r (ν)

L (n) = r (HS)
L (n),

i.e., that the Lindemann ratio does not depend on the softness
of the pair potential. This means that a universal Lindemann’s

5



J. Phys.: Condens. Matter 21 (2009) 075101 P E Ramı́rez-González and M Medina-Noyola

Figure 2. Non-ergodicity parameter f (ν)(k; n, σ (ν)) plotted as a
function of kσ (ν) (main figure) and of kσ (HS) (inset) for the systems
with softness parameter ν = ∞(HS), 14, and 5 (solid, dashed, and
dotted lines, respectively), at the ideal glass transition volume
fraction φ(ν)

g . The input static structure factor S(ν)(k; n, σ (ν)) used in
equations (2.6) and (2.7) was approximated according to the simple
analytic scheme based on the static equivalence principle plus the
Percus–Yevick/Verlet–Weis approximation (appendix). By
construction, the three curves collapse exactly onto the HS curve
when plotted as a function of kσ (HS) (the solid line of the inset). For
comparison, the HS result obtained with Rogers–Young’s static
structure factor (see section 4) is shown as a thin solid line in the
inset.

rule emerges from these considerations, namely, that all the
glasses made of soft-sphere particles melt when r (ν)

L (ng) =
r (HS)

L (ng) = 0.105, with the numerical value being another
prediction of the present theory [17].

The equality of the non-ergodicity parameters in
equations (3.7) and (3.8) above expresses an expected
independence of f (ν)(k; n, σ (ν)) and f (ν)

S (k; n, σ (ν)) from
the softness parameter ν when plotted as a function of
the unscaled wavevector k (or as a function of k scaled
with a ν-independent typical length, such as σ (HS)). By
construction, this scaling is exactly satisfied when the input
static structure factor S(ν)(k; n, σ (ν)) used in equations (2.6)
and (2.7) is based precisely on the static equivalence principle,
as the analytic scheme involving the Percus–Yevick/Verlet–
Weis approximation in the appendix is. We illustrate this in
figure 2, where the non-ergodicity parameters f (ν)(k; n, σ (ν))

of the soft-sphere systems interacting through a hard-sphere
(ν = ∞), a moderately soft (ν = 14), and a soft (ν = 5)
potential are plotted as a function of the wavevector k scaled
with the corresponding soft-sphere diameter σ (ν) (main figure).
The same information is then plotted in the inset as a function
of kσ (HS), where the three results collapse exactly onto a
single curve corresponding to the non-ergodicity parameter
of the hard-sphere system (solid curve). We notice that the
wavevector shift from the hard-sphere limit in the main figure
is rather small but appreciable. This simple approximate
scheme to calculate the non-ergodicity parameters satisfies
exactly the result in equation (3.9), with φ(HS)

g = 0.563
and with φ(ν)

g /φ(HS)
g = [σ (ν)/σ (HS)]3 determined by the blip

Figure 3. Collective correlator f (k, t) ≡ F(k, t)/S(k) as a function
of time in units of t (ν)

0 ≡ σ (ν)2/D0 at fixed k = kmax for the
soft-sphere systems in equation (1.1) with ν = ∞(HS), 14, and 5, in
the vicinity of their glass transition. The solid lines from left to right
correspond to the HS system at φ(HS) = 0.559, 0.56, 0.561, 0.562,
and 0.563(=φ(HS)

g ). The circles and crosses correspond, respectively,
to ν = 14 and 5, at the equivalent volume fractions
φ(ν) = [σ (ν)/σ (HS)]3φ(HS) with [σ (14)/σ (HS)] = 1.045 and
[σ (5)/σ (HS)] = 1.129 determined by equation (3.3). The circles and
crosses will collapse onto the solid lines if the time is expressed in
units of t (HS)

0 ≡ σ (HS)2/D0.

function result in equation (3.3); this yields φ(14)
g = 0.643, and

φ(5)
g = 0.8089.

Let us finally discuss the full dynamic equivalence
expressed by equations (3.4) and (3.5) above. The first
of these equations, along with equation (3.1), may be
rewritten in terms of the propagators f (ν)(k, D(ν)

0 t; n, σ (ν)) ≡
F (ν)(k, D(ν)

0 t; n, σ (ν))/S(ν)(k; n, σ (ν)) as

f (ν)(k, D(ν)
0 t; n, σ (ν)) = f (HS)(k, D(HS)

0 t; n, σ (HS)). (3.10)

This means that the collective propagator f (ν)(k, D(ν)

0 t; n, σ (ν))

at a given n and for fixed k will decay identically to the propa-
gator of the hard-sphere system, except for a trivial rescaling of
the time due to possible differences in the short-time diffusion
coefficients D(ν)

0 and D(HS)

0 . In figure 3 we present the tempo-
ral relaxation of the propagator f (HS)(kmax, D(HS)

0 t; n, σ (HS))

of the hard-sphere system at the position kmax of the first
maximum of S(k) and in the vicinity of the glass transition,
i.e. for the sequence of volume fractions φ(HS) = 0.559,
0.560, 0.561, 0.562, and 0.563 (=φ(HS)

g ) (solid curves, from
left to right). According to equation (3.10), and assuming that
D(ν)

0 = D(HS)
0 = D0, exactly the same solid curves would

also represent the decay of f (ν)(k, D0t; n, σ (ν)) of any soft-
sphere system with arbitrary ν but the same concentration and
wavevector, when plotted as a function of the time scaled in
the same time unit t (HS)

0 ≡ σ (HS)2/D(HS)

0 . If, however, we
plot f (ν)(k, D(ν)

0 t; n, σ (ν)) as a function of the time scaled with
t (ν)

0 ≡ σ (ν)2/D(ν)

0 , then the curves for the different soft-sphere
systems are shifted with respect to each other, as illustrated in
figure 3.

In experiment, theory, and simulation, one normally
expresses the dynamic and static properties of a given (hard
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or soft) system in terms of properties scaled with the typical
times and lengths of that particular system. The use of
different time and length scales for different systems obscures
a little the neat equivalence just discussed. Nevertheless, this
equivalence may also be enunciated as simple scaling rules for
the static and dynamic properties. To illustrate this, let us use a
scaled notation in which the propagator f (ν)(k, D(ν)

0 t; n, σ (ν))

is written as f (ν)(k, D(ν)
0 t; n, σ (ν)) = f̂ (ν)(y, τ ; φ(ν)) with

y ≡ kσ (ν) and τ ≡ t/t (ν)

0 . With this notation, equation (3.10)
can also be written as

f̂ (ν)(y, τ ; φ(ν)) = f̂ (HS)(δ−1
ν y, ηνδ

2
ντ ; δ−3

ν φ(ν)) (3.11)

where δν ≡ [σ (ν)/σ (HS)] and ην ≡ [D(ν)
0 /D(HS)

0 ]. This
means that if we have determined the full-time and wavevector
dependence of the collective propagator f̂ (HS)(y, τ ; φ(ν)) of
the hard-sphere system (as we can do within the SCGLE
theory [17]), then we have also determined the dynamics of
any soft-sphere system in its own scaled variables up to the
simple scaling rule given by this equation.

4. Comparison with experimental data

Let us now test the practical use of this simple scheme by
means of its comparison with the experimentally measured
dynamic properties of dispersions of moderately soft particles.
Since the use of this scheme involves the dynamic properties of
the reference hard-sphere system, let us first assess its accuracy
when applied to such a reference system; i.e., let us compare
the solutions of the SCGLE theory for the HS system, such
as those plotted in figure 3, with the actual experimental data
of van Megen and Underwood [31]; such a comparison, which
complements those initiated in [16, 17], is presented in figure 4.
Let us stress that this is a direct and straightforward comparison
between the full time-dependent solution of the SCGLE theory
and the corresponding experimental data. In contrast with
similar comparisons involving MCT, the present comparison
does not involve approximate asymptotic expressions for the
intermediate scattering function in specific regimes, nor the use
of the corresponding adjustable parameters, since our interest
here is to see the capability of our theory to describe the full-
time dependence actually observed in the experiments.

The glass transition of the hard-sphere system occurs,
according to the experimental report, at the volume fraction
φg = 0.575 [31]. The SCGLE theory, on the other hand,
predicts the dynamic glass transition to occur at φg = 0.563.
Thus, in figure 4 we compare the results of the SCGLE theory
with the experimental results at the same separation parameter
ε ≡ φ−φg

φg
. This means that the theoretical curves in the figure,

corresponding to the sequence of volume fractions φ = 0.485,
0.517, 0.524, 0.562, 0.569, and 0.575, are being compared with
the experimental sequence of experimental volume fractions
φ = 0.494, 0.528, 0.535, 0.574, 0.581, and 0.587, both
corresponding to the same sequence of separation parameters
ε = −0.141,−0.082,−0.069,−0.002, 0.01, and 0.021.

In order to establish this comparison of the theoretical
results with the experimental data a value had to be given to the
scaling time t0 ≡ σ 2/D0, a value that must reflect, among other

Figure 4. Comparison of the SCGLE collective correlator
f (k, t) ≡ F(k, t)/S(k) of the hard-sphere system at the position
kmax of the main peak of S(k) (solid lines) with the experimental
results of van Megen and Underwood [31] (symbols) corresponding
to the experimental volume fractions φ = 0.494, 0.528, 0.535, 0.574,
0.581, and 0.587 (from bottom to top). The SCGLE theory predicts
φg = 0.563, and hence the comparison is made at the same values of
the separation parameter ε = (φ − φg)/φg.

factors, the intensity of hydrodynamic interactions. The effects
of these interactions are actually quite important in the short-
time dynamics of hard-sphere dispersions at these high volume
fractions. Although there is no rigorous treatment of the
detailed manner in which hydrodynamic interactions will affect
the long-time relaxation near the glass transition, a reasonable
expectation is that these effects will only renormalize D0 [13],
and hence, also t0. Thus, at this stage, we simply assume
that these effects may be taken into account by the SCGLE
theory through an effective value of this scaling time, which
we then treat as an adjustable parameter. Furthermore, we
neglect its possible dependence on volume fraction within the
experimental range reported in the figure. In this manner,
we determined t0 by shifting the theoretical results for the
lowest volume fraction φ = 0.494 in figure 4 to coincide
with the corresponding experimental data. This yields a value
t0 ∼= 0.286 s, which was then employed in the comparisons
at the other volume fractions reported in the figure. Clearly,
the relaxation of the collective correlator of the three states
with the lowest volume fraction in figure 4 (which are in the
metastable liquid regime) are fitted quite acceptably. The two
states with the highest volume fraction are on the glass side and
have high non-ergodicity parameters. Nevertheless, although
the differences cannot be fully appreciated, we believe that
our theoretical predictions give at least a good first-order
quantitative approximation to the experimental values. The
remaining state in figure 4, phi = 0.574, which indeed is on
the fluid side but very close to the glass, does show the typical
two-step decay, but the height of the plateau and the timescale
of the alpha-relaxation are a bit off. This figure illustrates
the overall level of agreement of our simple theoretical
scheme with the experimental results for hard spheres, which
we find quite good, considering that it covers the whole
experimentally recorded time and concentration regimes and
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that such comparison involved only one adjustable parameter,
t0, to adjust the timescale, plus the empirical mechanism to
adjust the volume fraction so that the glass transition is located
at a common value, ε = 0, of the separation parameter
ε ≡ φ−φg

φg
. We must also mention, however, that it is at

the position of the main peak of S(k) where the agreement
between the measured and the theoretically predicted long time
is best. At other wavevectors the agreement deteriorates to the
same degree that the agreement between the theoretical and
the measured non-ergodicity parameters f (k) deteriorates, as
discussed in [17].

Let us now perform a similar comparison between the
present theoretical scheme and the experimental data of a
moderately soft-sphere system, namely, the dispersion of
microgel particles studied by Bartsch et al [10] around its
ergodic–non-ergodic transition. These authors indicate a value
of the soft-sphere diameter σ (ν) of 1.0 μm, and report the
glass transition to occur at a volume fraction φ(ν)

g
∼= 0.644.

Unfortunately, they do not define or quantify the degree of
softness of these particles, in a manner that serves us to
determine the parameter ν of our present model. We may
use, however, the phase diagram in figure 1 to estimate this
parameter by looking at the value of ν whose glass transition
volume fraction φ(ν)

g is the closest to the experimentally
reported value of 0.644. From the results in figure 1 we
have that φ(14)

g
∼= 0.643. Thus, we assume that ν = 14 is

the value of the softness parameter that best represents the
experimental system. We then compare the properties of the
soft-sphere system of the family in equation (1.1) with ν =
14 with the experimental data of Bartsch et al [10]. Notice
that, since the experimental and the theoretical glass transition
volume fractions coincide by construction, there is no need
to use the separation parameter to compare experimental data
and theoretical results. To calculate the latter we have used
the static inputs calculated with the simple approximation for
S(ν)(k) described in the appendix. The resulting comparison
is contained in figure 5. Just like in the hard-sphere case,
here too we treated t0 as an adjustable parameter. Thus,
using the experimental and theoretical data of the sample with
volume fraction φ = 0.642, just before the glass transition,
we determine the value t0 ∼= 3.5 × 10−2 s. The same value
of t0 was then employed at the other volume fractions. Once
again the comparison is very good in absolute terms, but also
considering the simplicity of the theoretical scheme employed
in the analysis of the static and the time-dependent properties
of the system.

Let us finally mention that the estimate of the softness
parameter above may be subjected to a small correction. The
reason for this is that, if instead of the theoretical value of
the hard-sphere glass transition φ(HS)

g = 0.563 employed
in the procedure above, we had employed the experimental
value, φ(HS)

g = 0.575, we would have obtained a slightly
larger value of the softness parameter, namely, ν ≈ 16.5.
In this procedure, the comparison of the theoretical results
with the experimental data in figure 5 needs to be done at
the same value of the separation parameter, as in the hard-
sphere case discussed above. The quality of the resulting
comparison between theoretical predictions and experimental
data is, however, exactly the same as in figure 5.

Figure 5. Comparison of the SCGLE collective correlator
f (k, t) ≡ F(k, t)/S(k) of the soft-sphere system in equation (1.1)
with ν = 14 at the position kmax of the main peak of S(k) in the
vicinity of the glass transition, for the volume fractions
φ(14) ≡ πnσ (14)3/6 = 0.642, 0.667, and 0.7 (from bottom to top,
solid lines). The symbols are the corresponding experimental results
of Bartsch et al [10] at the same volume fractions.

5. Very soft potentials

The comparison in section 4 of the simple theoretical scheme
discussed in section 3 with experimental data illustrates the
quantitative accuracy of that scheme to describe dynamic
arrest in systems with moderately soft potentials, like those
of equation (1.1) with ν larger than or of the order of 10.
This scheme, however, is expected to fail for sufficiently
soft interactions, and a natural question refers to its regime
of validity and its degree of failure when applied to softer
potentials, and this is the subject of the present section.
For example, one wonders to what extent the scaling rules
discussed in section 3 will be satisfied if the simple analytic
approximation for S(ν)(k; n, σ (ν)) employed in that discussion
is replaced, in the absence of systematic computer simulation
results, by an independent approximation for the static
structure factor which does not have the static equivalence
property built into its definition.

To check this, here we resort to the Rogers–Young
closure of the Ornstein–Zernike equation for the soft-sphere
potentials of equation (1.1), which we numerically solve for
Ŝ(ν)(kσ (ν); φ(ν)) ≡ S(ν)(k; n, σ (ν)). The first question is then
if the resulting static structure factors satisfy the simple version
of the static equivalence principle, discussed in section 3. This
is defined by the iso-structurality condition S(ν)(k; n, σ (ν)) =
S(HS)(k; n, σ (HS)) in equation (3.1), that requires both (soft-
and hard-sphere) equivalent systems to have the same number
concentration, and the ratio [σ (ν)/σ (HS)] to be determined by
means of the blip function result in equation (3.3).

We may define the same structural scaling principle in a
less restrictive fashion than that involved in equation (3.1) of
section 3. For this we use the function y(r) = e−βu(r)g(r), so
that instead of equation (3.1) we write

y(ν)(r; n(ν), σ (ν)) = y(HS)(r; n(HS), σ (HS)), (5.1)
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Figure 6. Static structure factor S(k) (upper row) and radial distribution function g(r) (lower row) of a hard-sphere system at φ(HS) = 0.5
(solid dark lines) and of a soft-sphere system with ν = 5 at φ(5) = 0.79 (squares with green lines) calculated within the Rogers–Young
approximation, and plotted as a function of the variables scaled with the soft-sphere diameter (left column) and with a common length scale,
for which we use σ (HS) (right column).

in which we no longer require a priori the two structurally
equivalent systems to have the same number concentration n.
Instead, we state the structural scaling principle in terms of
the requirement that for any soft-sphere system with given
number concentration n(ν) and soft-sphere diameter σ (ν),
whose function y(r) is y(ν)(r; n(ν), σ (ν)), there will be an
effective hard-sphere system with a number concentration
n(HS) and diameter σ (HS), generally different from n(ν) and
σ (ν), whose function y(HS)(r; n(HS), σ (HS)) will be identical to
that of the soft-sphere system at the same distance r . The
condition in equation (5.1) can also be stated in terms of the
radial distribution functions g(r), except in the neighborhood
of r = σ (HS), which is the only distance where the softness
of the potential manifests itself more dramatically. Thus, we
expect that the values near the contact of g(r) will be very
different for different softness parameters ν, but the rest of the
function will be almost identical. Similarly, we expect that the
S(k) of structurally equivalent soft systems will be identical at
the main peak but not all larger wavevectors. These differences
will be more appreciable for the softest potentials. One of the
aims of this section is to determine these differences.

In order to fully define this less restrictive version of the
static equivalence principle we must indicate the procedure
to determine the effective hard-sphere diameter σ (HS) and
concentration n(HS). For this, let us consider the general
structural equivalence condition of equation (5.1) at the

position kmax of the main peak of the static structure factor,
and let us write it in terms of dimensionless variables as
Ŝ(ν)(kmaxσ

(ν); φ(ν)) = Ŝ(HS)(kmaxσ
(HS); φ(HS)). In order to use

this condition we choose an arbitrary volume fraction φ(ν) of
the soft-sphere system with softness parameter ν to calculate
Ŝ(ν)(kmaxσ

(ν); φ(ν)) within the RY approximation to determine
the height of the main peak of the static structure factor.
We then compute Ŝ(HS)(kσ (HS); φ(HS)) for the hard-sphere
system, also within the RY approximation, varying φ(HS) until
Ŝ(HS)(kmaxσ

(HS); φ(HS)) matches the height of the main peak of
the static structure factor of the soft system; this determines the
ratio [φ(HS)/φ(ν)]. Thus, these two static structure factors now
coincide in the height, but not in the positions kmaxσ

(ν) and
kmaxσ

(HS), of the main peak of S(k). These positions, however,
are shifted by a factor given precisely by the ratio [σ (HS)/σ (ν)],
and hence the measurement of this shift determines the desired
diameter ratio. From the ratios [φ(HS)/φ(ν)] and [σ (HS)/σ (ν)]
thus determined we may also evaluate the [n(HS)/n(ν)], since
these ratios are related by

[
φ(ν)

φ(HS)

] [
σ (HS)

σ (ν)

]3

=
[

n(ν)

n(HS)

]
. (5.2)

These concepts are illustrated in figure 6 with the RY
results for the static structure factor Ŝ(ν)(kmaxσ

(ν); φ(ν)) of a
hard-sphere (ν = ∞) and of a soft-sphere (ν = 5) system with
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Figure 7. Collective propagators of three statically equivalent
systems: a hard-sphere system at φ(HS) = 0.5 (dark solid lines), a
soft-sphere system with ν = 5 at φ(5) = 0.79 (red dashed lines), and
a soft-sphere system with ν = 14 at φ(14) = 0.575 (blue line with
squares) calculated with the SCGLE theory using Rogers–Young
input static structure factors. In the inset a similar comparison is
made between the first two of these systems at volume fractions very
close to the hard-sphere glass transition, corresponding to
φ(HS) = 0.54877, 0.55172, and 0.5527. We notice that the HS glass
transition volume fraction predicted by the SCGLE theory using
Rogers–Young static inputs is φ(HS)

g = 0.5524.

volume fractions adjusted to have the same height S(kmax) of
the main peak. Matching this height determines a unique value
for the ratio [φ(HS)/φ(ν)], which in this case is [0.50/0.79] =
0.633. We may now determine the ratio [σ (HS)/σ (ν)]
by measuring the ratio [kmaxσ

(HS)/kmaxσ
(ν)], which in this

particular case is [σ (HS)/σ (ν)] = [kmaxσ
(HS)/kmaxσ

(ν)] =
0.859. In the same figure we re-plot these static structure
factors now as a function of the wavevector scaled with the
same length scale, namely, the hard-sphere diameter σ (HS)

(right column of the figure). There we see that this rescaling of
the wavevector not only leads to the overlap of the main peak,
but also to a very close coincidence at most wavevectors. The
main differences are observed in the height of the subsequent
maxima of S(k) at larger wavevectors. The same comparison,
but now in terms of the radial distribution functions, is included
in the lower row of this figure. There we notice that, in spite of
the expected differences near the distance of closest approach,
the long-range oscillations of g(r) of both systems coincide
almost exactly. This means that the structural equivalence will
also imply the equivalence of properties that do not depend
crucially on the value of g(r) near the distance of closest
approach, such as the integral of g(r), that determines the
isothermal compressibility according to the compressibility
equation.

Going back to equation (5.2), let us use the results of this
procedure to evaluate the ratio of number concentrations, with
the result that [n(ν)/n(HS)] ≈ 1. This then means that the
same simple structural scaling principle, employed in section 3
to define the analytic approximation of the structure of soft-
sphere systems in terms of the PY–VW structure of the hard-
sphere model, turns out to hold also when the structure of
these systems is described by the RY approximation. The main

Figure 8. Glass transition line normalized with its hard-sphere limit.
The circles were obtained using the Rogers–Young structure factor
directly in the SCGLE theory, and the squares were obtained using
the analytic scheme for the structure factor described in the appendix.
In the inset we show the differences between the ratio σ (H S)/σ (ν)

calculated with the blip function method (the solid line) and with the
iso-structurality condition described in the text (the dashed line). The
predictions for the glass transition with the latter method are
represented by the crosses. On the extreme left we plot the results for
the ratio n(ν)

g /n(H S)
g calculated with the Rogers–Young inputs.

difference is, however, that in the present case we did not use
the blip function method, and that the approximate equality
n(ν) ≈ n(HS) is a result and not an a priori assumption of the
method.

The next question is to what extent this static structural
equivalence extends over to the dynamic domain. To
investigate this, we now use the two equivalent static structure
factors, Ŝ(ν)(kmaxσ

(ν); φ(ν)) and Ŝ(HS)(kmaxσ
(HS); φ(HS)), as

static inputs of the SCGLE theory. In this manner we
determine the dynamic properties of both systems to check
if they coincide, as expected on the basis of the arguments
given in section 3. The answer is illustrated by the results in
figure 7, where we plot the collective propagator f (k, t) of
the hard-sphere system at φ(HS) = 0.5 and of two statically
equivalent soft-sphere systems with ν = 5 and 14 calculated
with the SCGLE theory using the Rogers–Young input static
static structure factors. Clearly from the comparison in the
main figure we learn that even though the three systems are
structurally equivalent in the sense illustrated in figure 6, they
do not yield the same dynamics. The corresponding deviations
are in fact negligible for the moderately soft potential (ν = 14),
but they are definitely appreciable in the case of the very soft
potential (ν = 5).

The state illustrated in the main figure in figure 7 is
relatively far from the glass transition. The inset shows a
similar comparison between the HS system and the system
with the softer potential (ν = 5) for two volume fractions
slightly below, and one volume fraction slightly above, the
HS glass transition. This comparison illustrates the fact the
scenario offered by the structurally equivalent static structure
factors of the soft system is now even qualitatively different:
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in this case the three statically equivalent soft-sphere volume
fractions are clearly below the glass transition of the soft-
sphere system. Thus, from the results in figure 7 we conclude
that, although for moderately soft potentials (ν � 10) the static
structural equivalence does imply dynamic equivalence to a
very good approximation, for softer potentials this implication
is no longer valid, particularly in the neighborhood of the glass
transition.

These observations must then have implications concern-
ing the localization of the glass transition line in the softness–
concentration state space in figure 1. The assumption of static
and dynamic equivalence discussed in section 3 led to the re-
sult in equation (3.9), according to which φ(ν)

g can be approxi-
mated by the product of two factors, namely, [σ (ν)/σ (HS)]3 and
φ(HS)

g . The first was calculated using the blip function result
in equation (3.3) and the second, φ(HS)

g = 0.563, is the result
of the SCGLE theory for the glass transition volume fraction
of the hard-sphere system within the Percus–Yevick/Verlet–
Weis approximation for S(k). If instead of the PY/VW we
employ the RY approximation, for which we just determined
φ(HS)

g = 0.5524, the phase diagram would be shifted to the
left by a trivial factor of (0.5524/0.563). Thus, if we wish
to emphasize features more fundamental than this trivial fac-
tor, rather than plotting φ(ν)

g we should instead plot the ratio
[φ(ν)

g /φ(HS)
g ] as a function of the softness parameter ν.

In figure 8 we plot in this manner the results for the
glass transition line calculated using the RY static structure
factor (solid circles) which is compared with the results in
figure 1 (squares); in both cases we have plotted [φ(ν)

g /φ(HS)
g ]

versus ν to eliminate the discussed trivial dependence on the
approximation employed. Clearly both results exhibit the
same overall scenario. As expected, the numerical differences,
which are negligible for large ν, become increasingly more
important as the softness parameter decreases, to the extent
illustrated in the figure. One consequence of these differences
is that the procedure that we employed to estimate the softness
parameter ν of the experimental system in section 4 would be
increasingly more imprecise for much softer systems, say for
ν � 10.

In the simple result in equation (3.9) (and in figure 1)
we used the blip function result of equation (3.3) to evaluate
the factor [σ (ν)/σ (HS)]3. As explained above, we can also
determine this factor using the RY approximation along with
the iso-structurality condition, which provides an independent
determination of the ratio [σ (ν)/σ (HS)], which is also plotted
in the inset of figure 8, to be compared with its blip function
counterpart. Again, both results are totally consistent between
each other for large ν, but the numerical differences become
important for the softest systems.

Finally, let us mention that equation (3.9), which can also
be written as [

φ(ν)
g

φ
(HS)
g

] [
σ (HS)

σ (ν)

]3

= 1, (5.3)

or as [n(ν)
g /n(HS)

g ] = 1, is just another manner of stating that the
glass transition number concentrations of a soft-sphere system,
n(ν)

g , and of its equivalent hard-sphere system, n(HS)
g , are the

same. By construction, this equality is satisfied exactly by the

simple result of section 3, as illustrated by the vertical dashed
line in figure 1. It is not obvious, however, that the exact results
will agree with this prediction, and this could only be tested
by computer simulations or experimental measurements. In
the meanwhile, the approximate but independent calculation
of the product in the left-hand side of this equation using
the RY approximation provides an indication of the degree
of deviations to be expected as the softness of the system
increases. The points joined with a dashed line of figure 8
represent the left-hand side of equation (5.3) calculated with
the RY structure factor. The deviation of this dashed line
from unity is a quantitative indication of the failure of one
important assumption of the principle of static and dynamic
equivalence in the limit of very soft potentials. We refer to the
assumption that two soft-sphere systems that are structurally
equivalent (according to the blip function or the iso-structural
conditions) will also have the same number concentration. In
particular, for very soft potentials at the glass transition we find
that [n(ν)

g /n(HS)
g ] > 1. Thus, another manner to read the fact

that the RY result for the left-hand side of equation (5.3) is
larger than 1 for very soft potentials is that the large amount of
interpenetration of the particles in this regime requires larger
crowding of particles to achieve the glass transition than with
more rigid potentials.

6. Conclusions

In this paper we have proposed a simple scheme for
the description of the structure and dynamics of systems
characterized by purely repulsive short-ranged soft potentials,
modeled by the pair potential of equation (1.1), with the aim
of studying the glass transition in these systems. This scheme
uses the concept of static equivalence between soft- and hard-
sphere systems, plus the virtually exact analytic approximation
for the static structure factor of the hard-sphere system
(the Percus–Yevick/Verlet–Weis approximation) to provide the
static structural information needed as an input in the self-
consistent generalized Langevin equation theory of colloid
dynamics. This leads to simple expressions for the dynamic
properties of the soft systems in terms of the corresponding
properties of the hard-sphere system involving well defined
rescaling rules. The most important advantage of this scheme
is its conceptual and practical simplicity, particularly from the
computational point of view.

This scheme allows us to quantitatively describe the
effects of the softness of the potential on the dynamic
arrest transition of the system. In particular, it provides a
remarkably simple prediction for the glass transition line in
the softness–concentration state space. This predicted glass
transition line allowed us to estimate the degree of softness
of the experimental system of [10] in terms of the softness
parameter ν, with the result ν ≈ 14. In its turn, this
allowed us to calculate all the dynamic properties of our
model representation of this experimental system, and to
establish a systematic and direct comparison of our predictions
with the experimental measurements of the relaxation of
concentration fluctuations in this system near and at its glass
transition. Previous to this comparison, we established a
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similar comparison of our theoretical predictions with the
experimental results of [31] for hard-sphere dispersions. In
both cases a remarkable agreement was observed without the
need for adjustable parameters in approximate solutions of the
relaxation equations.

The emphasis of this paper was on moderately soft-
sphere systems, such as the experimental microgel particle
dispersions just referred to. For these systems our simple
dynamic equivalence principle is expected to be quantitatively
accurate. For softer systems this accuracy must eventually
break down, and a relevant question refers to the regime
where this happens. Here we addressed this question by
comparing the predictions of our simplified scheme, based on
the dynamic equivalence principle, with the results obtained by
an independent method not explicitly expected to deteriorate
for softer-sphere systems. This alternative method is based on
the direct calculation of the static structure factor of the soft-
sphere systems, i.e. without assuming a priori the validity of
the static equivalence principle. For this, we employed the
numerical solution of the Ornstein–Zernike equation with the
Rogers–Young closure. The use of this method revealed that,
apart from rather trivial factors reflecting the absolute accuracy
of the approximations for S(k), this independent scheme leads
to the same scenario of dynamic equivalence between soft-
and hard-sphere systems, except for deviations that become
increasingly important for increasingly softer systems. The
most notorious deviation actually reveals an important feature
of the glass transition in systems with very soft potentials.
This refers to the fact that very soft potentials require a
higher degree of crowding (i.e. larger number concentrations)
to achieve the glass transition compared with the number
concentration needed by a structurally equivalent hard-sphere
system.

Other than this rather quantitative difference, the general
conclusion is that systems with radial short-ranged soft
interactions modeled by the pair potential in equation (1.1)
behave in a completely analogous manner to hard spheres.
This is by no means an unexpected conclusion, but we
have converted this general qualitative statement into a useful
quantitative theory, that will also be useful as a reference
concept to contrast the behavior of other families of repulsive
interactions, such as those describing the ultra-soft interactions
between polymer stars and other tenuous objects. The
discussion of this subject, however, is the subject of a separate
communication.
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Appendix. Equivalence between soft-and
hard-sphere systems

The equivalence principle of soft and hard spheres can be
expressed by the following relation:

exp(βu(ν)(r))g(ν)(r; n, σ (ν)) ≈ exp(βu(ν′)(r))g(ν′)(r; n, σ (ν′))

≈ y(HS)(r; n, σ (HS)), (A.1)

which expresses the approximate equality of the function
y(r) of two soft-sphere systems with degrees of softness ν

and ν ′, and soft-sphere diameters σ (ν) and σ (ν′), respectively,
provided that both have the same particle number concentration
n. For this equality to hold, however, the two soft-sphere
diameters σ (ν) and σ (ν′) must be related in an appropriate
manner. The simplest such relationship between these two
diameters is provided by the ‘blip function’ condition [1],
which requires the volume integral of the blip function,
b(ν,ν′)(r) ≡ [exp(−βu(ν)(r))− exp(−βu(ν′)(r))], to vanish. In
equation (A.1) we have included explicitly the particular case
of the hard-sphere system, labeled as HS, corresponding to the
limit ν → ∞.

Since there exist highly accurate analytic approximations
for y(HS)(r; n, σ (HS)), it is convenient to approximate the radial
distribution function g(ν)(r; n, σ (ν)) of the soft-sphere system
with pair potential u(ν)(r) by

g(ν)(r; n, σ (ν)) ≈ exp(−βu(ν)(r))y(HS)(r; n, σ (HS)), (A.2)

with σ (HS) being the solution of
∫

d3r
[
exp(−βu(ν)(r)) − exp(−βu(HS)(r))

] = 0 (A.3)

for given ν and given soft-sphere diameter σ (ν). This allows
us to approximate the static structure factor of this soft-sphere
system by

S(ν)(k; n, σ (ν)) = 1

+ n
∫

d3r eik·r [
exp(−βu(ν)(r))y(HS)(r; n, σ (HS)) − 1

]
.

(A.4)

Notice, however, that by adding and subtracting n times
the Fourier transform of exp(−βu(HS)(r))y(HS)(r; n, σ (ν′)) =
g(HS)(r; n, σ (HS)) to the rhs of this equation we may re-write it
as

S(ν)(k; n, σ (ν)) = S(HS)(k; n, σ (HS))

+ n
∫

d3r eik·rb(ν,∞)(r)y(HS)(r; n, σ (HS)) (A.5)

where b(ν,∞)(r) ≡ [exp(−βu(ν)(r))−exp(−βu(HS)(r))] is the
blip function of the soft-sphere and the hard-sphere potentials.
From the properties of this function, we expect that the
integral in the last term of the previous equation must be
negligible except for very soft potentials. Thus, the simplest
approximation for the static structure factor S(ν)(k; n, σ (ν))

of the soft-sphere potential u(ν)(r) is to replace it by the
static structure factor of the hard-sphere potential at the same
number density and diameter σ (HS) related to the soft-sphere
diameter σ (ν) by the condition that the integral of the blip
function b(ν,∞)(r) vanishes. This results in the approximation
S(ν)(k; n, σ (ν)) = S(HS)(k; n, σ (HS)), which, in terms of the
scaled function Ŝ(ν)(k̂; φ(ν)) defined by S(ν)(k; n, σ (ν)) =
Ŝ(ν)(kσ (ν); φ(ν)), reads

S(ν)(k; n, σ (ν)) = Ŝ(HS)(λ−1kσ (ν); λ−3φ(ν)), (A.6)
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which is employed in section 3 to derive the scaling rules of
the dynamic properties.

In practice, we approximate Ŝ(HS)(y; φ) by the analytic so-
lution Ŝ(PY)(y; φ) of the Percus–Yevick approximation [20, 21]
with the correction of Verlet and Weis [22]. The analytic result
for Ŝ(PY)(y; φ) is given by

S(PY)(y; φ) = 1 + 12φ
G(−iy; φ) − G(iy; φ)

iy
(A.7)

with the complex function G(z; φ) of its complex argument z
defined as

G(z; φ) = z�(z; φ)

12φ [�(z; φ) + �(z; φ)ez]
(A.8)

with

�(z; φ) ≡ 12φ((1 + φ/2)z + (1 + 2φ)) (A.9)

and

�(z; φ) ≡ (1 −φ)2z3 + 6φ(1 −φ)z2 + 18φ2z − 12φ(1 + 2φ).

(A.10)
The static structure factor Ŝ(PY/VW)(y; φ) of the Percus–Yevick
approximation with the Verlet–Weis correction is then simply
defined as [22]

S(PY/VW)(y; φ) = S(PY)(y; φ − φ2/16). (A.11)
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